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Intfroduction

A simple example: a power system hosts a generic number g of
controllable power plants and we need to supply u loads (forecasted).

Let us suppose that the power system is handled by a vertically
integrated utility (i.e. a monopolistic entity) interested to solve the
following problem at a generic time t:

g
C t
Pgl(t) ng(t Z L gl( )

where
= P, (t):is the power output of the generator g; at time t;

. Rg”;’”'", Fjr*: are the min/max power of generator g; (fime indep.);
. Plj(t): is the (forecast) load of the load I; atf fime t;

= ((P,) is the cost of power of generator g; as function of P,
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Let us suppose that the grid is modelled as a “copper plate”, namely its
constraints are disregarded as well as its losses.

The solution of the previous problem can be determine using the
standard Lagrange multipliers (for simplicity we omit the time t and
generators constraints).

=1 1=1 j:1
oL aCy1(P,,) d0Cyq (ng)
— +4A=0;..; +A=0;
dF, dF,, ang
ac, dCy B
0Fy, dF,
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ﬁ: 0 _)ngl-l_zpl

=1 Jj=1

The optimal schedule of the g generators is when aC;/dF,, are all equal
to A. They are called generation units marginal prices, namely the
variation of the cost of a generation unit as a function of the variation
of the power generation of the same unit.
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We should also satisfy the g inequalities

R < Py (0) < B
So, graphically we have the following (g = 2):

ac;, , c, ,
dP, dP,

1 2

|

min * max min " pmax
P.g1 F g F sz K J> 92

>

However, in a real power system there are the grids constraints (i.e.
nodal voltage limits and branches power/current flow limits) and
controllable resources constraints to be considered.
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The optimal power flow problem (OPF) has the generic formulation:

min C
2]
S.t.

grid constraints
decision variables (0) constraints

= (s the cost of the grid operation, not only the one of the
generators but also losses and/or other penalty functions.

= Constraints:
= capability curves of generators, batteries, etc.;
= nodal voltages within range (usually 0.95 <+ 1.05 of nominal voltage);
=  branches maximum powers or currents (e.g. line ampacity limits);

= Control variables:
= generators setpoints (active/reactive powers or voltage);
= reactive power compensators setpoints;
=  batteries setpoints (active/reactive powers);
= |oad control setpoints (in case of demand side management);
= Transformers tap changers or phase shifters.



Introduction

Example of OPF: determine the optimal active and reactive power
setpoints of 3 generators for 1h of operation given the knowledge of
the grid parameters, constraints and supplied load per node.

Cost function: ¥;_; 5 C; (B;,) P, = 100 MW Py, =100 MW
Control variables: T = 375 — 22
. sz’Pg3’ng’Q93 1 1 9 42
Note that the decision variables are

Y13 =(1.88 —j11.D)pu Y,3 =(1.88 —j11.0)pu
P, B, Q4,, Qg, since bus 1 is the slack ;
and its powers are determined by the power S, = 100MVA
balance of the load flow with the other g Vi = 220KV
nodal powers fixed. Note also that the slack P, =500 Mw
cost must be in the objective.
Constraints:
= Grid’s load flow equations Quortly s

. L pjrin, pmax 0+ 400 MW

= Nodal voltage magnitudes within limit gin, gmas 80 - 80 MVar

= Branches powers below max €, Gy, Cs 15,1, 225 CHF /MWh

= Generators pmin, pmax gnd QmMn QMax — gmax gmax gmax 200,200,300 MVA
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min z C; (P ) Non-convex problem !
sz Pg3 ng Qgs

S.t.

3 P, = 100 MW P, =100 MW
L z ZIX’-J ’ L= 1;2'3 Yy, =(3.75 —j22.2)pu
j=1 91 92
_ | 2
Si = (B, +jQq,) + (P, +jQ1,)
Pml < P < Pmax [ = 1 2 3 Y13 =(1.88 —j11.1)pu Y,3 =(1.88 —j11.0)pu
lem < Qg < Qg™ i1=123 3 Sy, = 100MVA
i i V, = 220kV
V. |=220kv, arg(V;) = 0; -

Pl3 - SOOMW
Vmin < |Vi| < Vmax

Villyy (Vi =v))| < st i # ) or |v(vi = V)| < I3, i #

Note that the load powers P, can be either positive or negative since

they are associated to aggregates of loads and local distributed
generation. So, P, < 0 for the case of aload.



Infroduction n
Solution v, =1pu V, = 0.9803 pu
8, = 0 mrad

Ap, = 60.04 CHF /MW h
P, +j Qg = 400MW + j8OMVar

0, = —26.23 mrad
Ap, = 1 CHF /MW h
Py, +jQg, = 235.36MW — j10.27MVar

P, = 100 MW P, =100 MW
Sy, = 64.58 MW +
+j34.79 MVar
Y1, = (3.75 —j22.2)pu
15CHF/MWh'\ ¢4 >

g, ) 1CHF/MWh

| 2
Si3 = 23541MW + j36.46 MVar Sy3 = 199.55MW + j13.46 MVar
Y15 =(1.88 —j11.0)pu Y
3

23 = (1.88 — j11.D)pu

Sp = 100MVA
Losses: 14.96 MW V, = 220kV
Total cost: 24145 CHF /h

gs ) 225CHF/MWh
P, =500 MW
V3 = 0.9546 pu

. 03 = —211.97 mrad

Ap, = 226.94 CHF [MWh

pjrm, pmax 0+ 400 MW P, +j Qg = 79.6MW + j80MVar
Qpn, Qmax —80 +~ +80 MVar
Cy, Cy, Cs 15,1,225 CHF /MWh

G 200,200,300 MVA
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Solution v, =1 pu

V, = 1.0117 pu

8, = 0 mrad 6, = +11.75 mrad

Ap1 =15 CHF /MWh Apo = 14.96 CHF [MWh

Py +j Qg =320.45 MW + j22.27 MVar Py, +Jj Qg, = 400MW + j8OMVar

P, =100 MW Py, =100 MW
Sy, =-3076 MW +
_ —j21.36 MVar
Y1, =(3.75 —j22.2)pu
15 CHF/MWh| g1 —_— g, ) 1CHF/MWh
| 2
S13=251.20 MW + j34.89 MVar\ /52,3 = 269.14 MW + j49.27 MVar
Y15 =(1.88 —j11.0)pu Yy3 = (188 —j11.D)pu
S, = 100MVA
Losses: 20.45 MW 3 VZ — 220kV
Total cost: 5207 CHF /h
gs ) 225CHF/MWh
P, = 500 MW
V3 = 0.9567 pu
Quantity ——[vaive [N
Quantity Valve Apz = 1636 CHF JMWh
(P oriE 0= 400 MW Py, +Jj Qg, = OMW + jBOMVar
min npmax — -
Qg; " Qg; 80 +~ +80 MVar
Cy, Cy, C3 15,1,225 CHF/MWh Lines power fransmission limits

S15*, %%, S{B 2000,2000,3000 MVA x10
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By concatenating the previous problem for each time slot of the day,
we obtain the schedule of each generator. This type of problems are
called dispatching problems. In this case, we need to also add a time-
dependency constraint associated to generator ramping along with
the fact that also other constraints are time-dependent.

p ZZ 0)
gz(t) Py (O le(w 0g4(®) £

SO =vt) ) Vi()Y;,i=1,..,5
;—1 J

$i(0) = (B, () +Qg,(®) + (P,(0) +jQu(0) i =1,...,5
Pt < Py (8) S P, i=1,..,9g
Q™ < Qg () < Q™ i=1,..,9g
|v1|—1pu arg(Vl) = 0;
Vinin < |[Vi(O] < Vi i = 2,.
Vil |y (Vi - Vj(t))| < s";ax or
min < p, (t+1) — By, (0) < 7%
Where s is the nr. of grid’s nodes and g the nr. of generation units.

Y (Vi@ - v;0)| s i # =1,
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In case some generators are energy storage systems, we need 1o
enforce that their energy content (e.g. the state-of-charge of a
battery) are within bounds.

Tmax 7 g m
t))+ Z C; P t
Pgz (D), ng(t) ng(t) +Qgg(®) tz <Z ( ) i=1 l SI( ) )

Po, (6),.0,Psy, (£),Qs, (8,0, (6) =1
S.t.

S.(t) = Vi(t)zzj(t)xij,i 1.5

j=1

$:(0) = (P (®) + Qg (0) + (P, () +j05, () + (P (D) +jQu(D) i = 1, .5
Pnin < Py () S PP, i =1, ..., g
QIin < Q,, () < QI i=1,...,g
P < P (1) < P, i=1,..,m
QUM < Q5 (1) < QI i=1,..,m
|V1|—1pu arg(Vl) =0;

Vinin < [Vi@®)| < Vipar i = 2,

V@] |vy (Vi(t) - Vj(t))| < Sir_'}ax,or
grin < p (t+1) — B,(1) < §nex
SoCi(t + 1) = SoCi(t) + Py,(t + DAL, i = 1,...,m (lossless model of the storage device i)

Yy (Vl-(t) —7,-(t))| <SIM™i#j=1,..,s

SoC™™ < SoCy(t +1) < SoC™™,i=1,..,m

Where mis the number of energy storage devices.
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In case we add start-up and shutdown costs of the generators, we
obtain the so-called unit commitment problem.

g
(Z (P(®) + U, (Owg, (0 (1 = wy (& = D) + 5D, (0) (1w (©)) ng(t—1)>

Py, (©),.. ng(t)egz(t) Qgg(t)z L

wgl(t) wgg(t)
s.t.
wy, (t) € {0,1}
n

S =V;®) ) V®)Y;;,i=1,..,5s
]Z:l—J j

Si(6) = (Pgi(t) +ngi(t)) + (Pzi(t) +jin(t)),i =1,..,5
PR < P (8) S PM,i=1,.., g
Q" < Qg () < Q¥ i=1,..,9
V1|=1pu, arg(V,) = 0;

Vinin < [Vi(®)| < Vg, i = 2,.

Vil vy (Vi(t) - Vj(t))| < Si’,’}a", or

gmin < py (64 1) — By, (t) < §nax

Yy (Vi) = Vi) s i = 1,5

where SU;(t) is the cost of starting up unit i af fime t, SD;(¢t) is the cost of
shutting it down and w,_(t) the integer variable associated to the state

of the generation unit: w;(t) =1 < P, .(t) > 0.
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Recall on convex optimization m

The OPF problem is about optimisation.

Convex optimization problems are continuous optimization problems
and are usually tractable (i.e., can be solved exactly for large
dimensions, up to hundreds of thousands of dimensions).

Non-convex complex continuous optimization problems can be very
hard to solve exactly, even for modest dimensions; they are solved
approximately using heuristics that often need an inifial guess.

Observation: continuous means that the optimization variables are real
or complex numbers — as opposed to “discrete” optimization problems
where the optimization variables can be represented as integers.

In the context of OPF problems, we can have discrete OPF in case, for
instance, we would like to determine which generators are on or off at
a given time t accounting for their start-up and shutdown costs. This
type of problem is called unit commitment (see slide 13).
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Convex optimization problems

" min fo(x) " max fo(x)
overallx € X overallx € X
" where X is a convex subset of ®m where X is a convex subset of
R™ and f; is a convex function R™ and f; is a concave function

f(’f_) €R Convex function:
All chords are = graph

f(x) €R x € X
1 Concave function

: =

- x €X

Convex set

Non-convex set eER
vx,x' € X, [x,x']cX f(x) Non convex, hon

Ax,x' € X, [x,x'| ¢ X .
\/@Ctlon

x €EX




Recall on convex optimization

How to test convexity ¢

1.

Function f is convex if the
domain dom f is convex and if
Vx,y € dom f and 1 € [0,1] we
have

fAx+ (A —-Dy) <Af(x) +

(1 -Df ).

If £ is differentiable then f is
convex iff

fO=f)+ VI )y —x)
Vx,y € dom f.

If £ is twice differentiable then f
is convex iff

V2f(x) = 0 (positive semidefinite
Hessian).

If f;,i € 1 are convex and
c; =0, then f =Y.,¢fi is
Cconvex.

Under the same
assumptions f(x) =
max f; (x) IS CoOnvex.

If £, h are convex functions
and h is increasing, then
g = h(f(+)) is convex.

The set {x: f(x) < c}is
convex if f is convex (level
set).
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Why are convex problems special ¢

f(x) f(x)

X X
min f(x) Is @ convex problem min f (x) is Not a convex problem
any local minimum there can be many local minima.

is a global minimum.
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Which of these problems is convex ¢

1. A

5 B A: max x? over x € [a, b]

3. C B: min x? over x € [a, b]

4. AandB

5. Aand C C: max x + y over

4 BandC (x,y) € R? subject to
x+ 2y <10

7. Al 2x+y <8

8. None x=>0,y=0

?. ldon't know
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Which of these problems is convex ¢

1. A .
o B A: mMax x“ over x € [a, b]
3. C B: min x? over x € [a, b]
4. AandB
5. Aand C C: max x + y over
4 BandC (x,y) € R? subject to
' x+ 2y <10
7. Al 2x+y<8
8. None x=20,y=20
?. ldon't know
Answer 6

A is hot a convex optimization problem; this is a maximization and the function should be concave,
which is not true.

B is a convex optimization problem: the function to be minimized is convex and the set X is an interval,
which is convex

C is a a convex optimization problem: the function to be maximized is convex (and concave) and
the set X is defined by linear inequadlities, therefore is convex.
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s this problem convex ¢

min ax? + by?
X,y
s.t. x*+y*<c?

1. Yes
No
Depends ona and b

Depends ona,b, and ¢

SIS

| don't know
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s this problem convex ¢

min ax? + by?
X,y
s.t. x*+y*<c?

1. Yes

2. No

3. Dependsonaandb
4. Dependsona,b,andc
5. ldon't know

Answer 3

The constraint x? + y? < ¢? always defines a convex set irrespective of the value of c.

Since the objective function f(x,y) = ax? + by? is twice differentiable, it is convex if
and only if the Hessian V2f is positive semidefinite (PSD). In this case, the Hessian matrix

is (g 2) whichis PSD only when a, b > 0.

For example, x? + y? is a convex function of (x,y) but x? — y2 is not.
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s this problem convex ¢

min x? — y?

X,y

s.t. x*+y*=c*(c>0)
1. Yes
No

It depends on ¢

LN

| don't know




Recall on convex optimization m

s this problem convex ¢
min x? — y?
X,y
s.t. x*+y*=c*(c>0)

1. Yes

2. No

3. Itdependsonc
4. ldon't know
Answer 2

The set x? + y? = ¢? represents a circle in two dimensions. It is not @
convex set.
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s it possible to reformulate the problem as a convex problem?

min x? — y?
X,y
s.t. x?+y?=c?
1. Yes
No

It depends on ¢

LN

| don't know
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s it possible to reformulate the problem as a convex problem?
min x? — y?
X,y
s.t. x*+vy

1. Yes
2. No
3. Itdependsonc

4. |don't know

Answer 1
We can eliminate y in the objective function by using the constraint:

x?2+y2=c®) oy=+Jcz2—x2and|x| < ||

Thus, the problem is equivalent to: mxin(x2 —(c?2—x?) s.tlx| <|c|

That is equivalent tomin 2x? — c¢? s.t.|x| < |c| which is a convex problem.

Take home message: transformation of problem formulation is an important topic.
Some non-convex formulations can be made convex, but others can't.
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Linear programs m

A linear program can be described in the form:

min cTx
xXERM
S.t.

Ax < b,Cx =d

Indeed, the objective function is linear (so, it is convex) and the set
X c R" is defined by linear equalities and inequalities (that are
convex too). Here ¢ € R™ and A, C are matrices with n columns.

For this type of optimizations, there exists very efficient packages to
solve large scale problems.

Note that the following problem (obtained by changing ¢ into —c)
is also a linear program

max c! x
xXERM

S.t.
Ax < b,Cx =d



Linear programs m

Example
max fo(x) =x +y
S.t.
oy x+2y <10

2x+y <8

8 1 x=>0,y=>0

5 folx*,y*) = 6 = optimal value

y =4
/ I | » X

The solution space =0 4 10
identified by the

constraints is

convex (grey areq)
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Max-Removal Transformation n

Which problem can be formulated as LP?

. . 2 2
1. A A-ryrclllyn(x +y°)
S.t.
2. B x + 2y <10

2x+y <8
3. Both x=>0,y=>0

4. None B: rgcliynfo(x, y)

S. t.
x+ 2y <10
2x+y <8
x=20,y=0
where f,(x,y):= max(x + vy, 2y)

5. Ildon't know




Max-Removal Transformation

Which problem can be formulated as LP?

i (2 4 2
1. A A.r)rclllyn(x + y4)
S.t.
2. B x+2y <10
2x +y <8
3. Both x=>0,y=>0
4. None B: rgcliynfo(x,y)
] S.t.
5. ldon't know x4 2y < 10
2x+y <8
x=20,y=0
Answer 2 where f,(x,y):= max(x + vy, 2y)

A IS a convex optimization problem but is not a linear program. It
does not seem possible to transform it exactly info an equivalent
linear program.

B is not formulated as a linear program, but, as we show next, it is
equivalent to a linear program.



Max-Removal Transformation

The problem B is equivalent to problem B’

Problem B: minf,(x, y) Problem B': min t
x,y t,x,y
S.t. S.t.
x+ 2y <10 t=x+y
2x+y <38 t =2y
x=0,y=0 x+2y <10
where f,(x,y): = max(x + y,2y) 2x+y <8
x=>0,y=0

Let us see why B & B’: the key observation is that the constraints

t>x+y,t=>2yare equivalent to t = max(x + y, 2y).



Max-Removal Transformation

Let X be the set of (x,y) that are feasible for problem B, i.e. X =
{(x=0,y=0):x+2y <10,2x + y < 8}. Thus, problem B’ can be re-

written as

A
t

min t
t,x,y
S.t.
t > folx,y) t = fo(x,y)

(x,y) € X

= fox'y) - s

(x*,y%)

The optimal value of B' is the min of t in the shaded area. We see on
the figure that it is the minimum of f,(x, y) over (x,y) € X,which is the
optimum of B.



Max-Removal Transformation

Any problem of the form
mxinfl(x) + ...+ f,(x) + h(x)

S. t.
x €EX cR™
where f;(x) = Jmax gj,i(x)
=1..n;

1

Is equivalent to
Irtlin t; + -+ t, + h(x)
X

S.t.
x €X,t=(tg,..t,) €ER"
tj = gj,i(X),Vl' =1 n],‘v’] =1..n

We call this process the max-removal transformation as it removes
the max terms from the objective function at the expense of adding
one optimization variable per max. It is very often used in the
context of OPFs.



Max-Removal Transformation

Which problem is a re-formulation of problem P as a Linear Program ¢

1.

AP A

A

B

Both

None

| don't know

(P)

min [x —y — 5| over
x+2y <10

2x +y <8
x=20,y=0

(A)
mint over
t=x—y—>5
t=>—x+y+5
x+2y <10
2x+y <8
x=20,y=0

(B)
min t over
t<x—y-—5
t<—-x+y+5
x+2y <10
2x+y <8
x=20y=0




Max-Removal Transformation

Which problem is a re-formulation of problem P as a Linear Program ¢
1. A

5 B (P) (A) (8)
’ min [x —y — 5| over mint over min t over
3. Both x+2y <10 t=x—y—>5 t<x—y-—5
2x +y <8 t=>—x+y+5 t<—-x+y+5
4. None x=0,y=0 x+2y <10 x+2y <10
’ 2x+y <8 2x+y <8
5. ldon't know x>0,y >0 x>0,y>0
Answer 1

Recall that the absolute function can be rewritten as follows:
|x| = max(x, —x)

Therefore, the objective function |x — y — 5| can be written as a
maximum of linear functions:
lx —y—5=max(x —y—5,-x+y+5)
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Non-convexity of the OPF n

By looking at the original AC-OPF problem, we can say that it is
non-convex optimization problem because the set X of feasible
variables is not-convex. Let's look at a simple example.

1 2

(P2, Q2) decision Feasible set (P,, Q,)
variables -5

Line admittance:
Yy, =0.734- j 4.890 p.u.

Node 1 is the slack bus:
Vl =1+ j0pu
A0
Constraints on voltage magnitude at node 2
0.95 < |V,| < 1.05pu

So, the feasible set for (P,, Q,) is given by: Use fsolve
Sp1 =Py +jQ2 =VY1,(V, - V3) in Matlab

\/(V{e)z + (Vzim)z = const € [0.95,1.05] 5




Non-convexity of the OPF m

In the next lectures we will use two approaches to render the OPF
problem convex:

1. replace the original constraints by means of some linear
approximations;

2. relax the original set of constraints.
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