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Introduction
A simple example: a power system hosts a generic number 𝑔 of 
controllable power plants and we need to supply 𝑢 loads (forecasted).

Let us suppose that the power system is handled by a vertically 
integrated utility (i.e. a monopolistic entity) interested to solve the 
following problem at a generic time 𝑡:

min
𝑃𝑔1 𝑡 ,…𝑃𝑔𝑔 𝑡

෍

𝑖=1

𝑔

𝐶𝑖 𝑃𝑔𝑖
𝑡

𝑠. 𝑡.

෍

𝑖=1

𝑔

𝑃𝑔𝑖
𝑡 + ෍

𝑗=1

𝑢

𝑃𝑙𝑗
𝑡 = 0

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

𝑡 ≤ 𝑃𝑔𝑖
𝑚𝑎𝑥

where

▪ 𝑃𝑔𝑖
𝑡 : is the power output of the generator 𝑔𝑖 at time 𝑡;

▪ 𝑃𝑔𝑖
𝑚𝑖𝑛 , 𝑃𝑔𝑖

𝑚𝑎𝑥: are the min/max power of generator 𝑔𝑖 (time indep.);

▪ 𝑃𝑙𝑗
𝑡 : is the (forecast) load of the load 𝑙𝑗 at time 𝑡;

▪ 𝐶𝑖 𝑃𝑔𝑖
 is the cost of power of generator 𝑔𝑖 as function of 𝑃𝑔𝑖

.
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Introduction
Let us suppose that the grid is modelled as a “copper plate”, namely its 
constraints are disregarded as well as its losses.

The solution of the previous problem can be determine using the 
standard Lagrange multipliers (for simplicity we omit the time 𝒕 and 
generators constraints).

ℒ = ෍

𝑖=1

𝑔

𝐶𝑖 𝑃𝑔𝑖
+ 𝜆 ෍

𝑖=1

𝑔

𝑃𝑔𝑖
+ ෍

𝑗=1

𝑢

𝑃𝑙𝑗

𝜕ℒ

𝜕𝑃𝑔𝑖

= 0 →
𝜕𝐶1 𝑃𝑔1

𝜕𝑃𝑔1

+ 𝜆 = 0; … ;
𝜕𝐶𝑔 𝑃𝑔𝑔

𝜕𝑃𝑔𝑔

+ 𝜆 = 0;

𝜕𝐶1

𝜕𝑃𝑔1

= ⋯ =
𝜕𝐶𝑔

𝜕𝑃𝑔𝑔

= −𝜆

𝜕ℒ

𝜕𝜆
= 0 → ෍

𝑖=1

𝑔

𝑃𝑔𝑖
+ ෍

𝑗=1

𝑢

𝑃𝑙𝑗

The optimal schedule of the 𝑔 generators is when Τ𝜕𝐶𝑖 𝜕𝑃𝑔𝑖
 are all equal 

to 𝜆. They are called generation units marginal prices, namely the 
variation of the cost of a generation unit as a function of the variation 
of the power generation of the same unit.

4



Introduction
We should also satisfy the 𝑔 inequalities

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

𝑡 ≤ 𝑃𝑔𝑖
𝑚𝑎𝑥

So, graphically we have the following (𝑔 = 2):

5

𝜕𝐶1

𝜕𝑃𝑔1

𝜕𝐶2

𝜕𝑃𝑔2

𝑃𝑔1
∗ 𝑃𝑔2

∗𝑃𝑔1
𝑚𝑖𝑛 𝑃𝑔1

𝑚𝑎𝑥 𝑃𝑔2
𝑚𝑖𝑛 𝑃𝑔2

𝑚𝑎𝑥

𝑃𝑔1
∗ + 𝑃𝑔2

∗ + ෍

𝑗=1

𝑢

𝑃𝑙𝑗
= 0

−𝜆

However, in a real power system there are the grids constraints (i.e. 
nodal voltage limits and branches power/current flow limits) and 
controllable resources constraints to be considered.



Introduction
The optimal power flow problem (OPF) has the generic formulation:

min
𝜃

𝐶

𝑠. 𝑡.
𝑔𝑟𝑖𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝜃 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

▪ 𝐶 is the cost of the grid operation, not only the one of the 
generators but also losses and/or other penalty functions.

▪ Constraints:

▪ capability curves of generators, batteries, etc.; 

▪ nodal voltages within range (usually 0.95 ÷ 1.05 of nominal voltage);

▪ branches maximum powers or currents (e.g. line ampacity limits);

▪ Control variables:

▪ generators setpoints (active/reactive powers or voltage);

▪ reactive power compensators setpoints;

▪ batteries setpoints (active/reactive powers);

▪ load control setpoints (in case of demand side management);

▪ Transformers tap changers or phase shifters.
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Introduction
Example of OPF: determine the optimal active and reactive power 
setpoints of 3 generators for 1ℎ of operation given the knowledge of 
the grid parameters, constraints and supplied load per node.

Cost function: σ𝑖=1,3 𝐶𝑖 𝑃𝑔𝑖

Control variables:

▪ 𝑃𝑔2
, 𝑃𝑔3

, 𝑄𝑔2
, 𝑄𝑔3

Note that the decision variables are

𝑃𝑔2
, 𝑃𝑔3

, 𝑄𝑔2
, 𝑄𝑔3

since bus 1 is the slack

and its powers are determined by the power
balance of the load flow with the other
nodal powers fixed. Note also that the slack
cost must be in the objective.

Constraints:

▪ Grid’s load flow equations

▪ Nodal voltage magnitudes within limit

▪ Branches powers below max

▪ Generators 𝑃𝑚𝑖𝑛 , 𝑃𝑚𝑎𝑥 𝑎𝑛𝑑 𝑄𝑚𝑖𝑛 , 𝑄𝑚𝑎𝑥 .
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2

= 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

𝑌2,3 = 1.88 − 𝑗11.1 𝑝𝑢

𝑌1,2 = 3.75 − 𝑗22.2 𝑝𝑢

𝑌1,3 = 1.88 − 𝑗11.1 𝑝𝑢

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝑄𝑔𝑖
𝑚𝑖𝑛, 𝑄𝑔𝑖

𝑚𝑎𝑥 −80 ÷ +80 𝑀𝑉𝑎𝑟

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥, 𝑆23

𝑚𝑎𝑥, 𝑆31
𝑚𝑎𝑥 200, 200, 300 𝑀𝑉𝐴

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉



Introduction

min
𝑃𝑔2 ,𝑃𝑔3 ,𝑄𝑔2 ,𝑄𝑔3

෍

𝑖=1

3

𝐶𝑖 𝑃𝑔𝑖

𝑠. 𝑡.

𝑆𝑖 = 𝑉𝑖 ෍

𝑗=1

3

𝑉𝑗𝑌𝑖𝑗 , 𝑖 = 1,2,3

𝑆𝑖 = 𝑃𝑔𝑖
+ 𝑗𝑄𝑔𝑖

+ 𝑃𝑙𝑖
+ 𝑗𝑄𝑙𝑖

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

≤ 𝑃𝑔𝑖
𝑚𝑎𝑥 , 𝑖 = 1,2,3

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖

≤ 𝑄𝑔𝑖
𝑚𝑎𝑥 , 𝑖 = 1,2,3

𝑉1 =220kV, arg 𝑉1 = 0;

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥

𝑉𝑖 𝑌𝑖𝑗 𝑉𝑖 − 𝑉𝑗 ≤ 𝑆𝑖,𝑗
𝑚𝑎𝑥 , 𝑖 ≠ 𝑗 or 𝑌𝑖𝑗 𝑉𝑖 − 𝑉𝑗 ≤ 𝐼𝑖,𝑗

𝑚𝑎𝑥 , 𝑖 ≠ 𝑗

Note that the load powers 𝑃𝑙𝑖
 can be either positive or negative since 

they are associated to aggregates of loads and local distributed 
generation. So, 𝑃𝑙𝑖

< 0 for the case of a load.

8

1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2

= 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

𝑌2,3 = 1.88 − 𝑗11.1 𝑝𝑢

𝑌1,2 = 3.75 − 𝑗22.2 𝑝𝑢

𝑌1,3 = 1.88 − 𝑗11.1 𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

Non-convex problem !
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𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2 = 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

Solution

𝑉3 = 0.9546 𝑝𝑢 
𝜃3 = −211.97 𝑚𝑟𝑎𝑑
𝜆𝑃3

= 226.94 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑃𝑔3
+ 𝑗 𝑄𝑔3

= 79.6𝑀𝑊 + 𝑗80𝑀𝑉𝑎𝑟

𝑉2 = 0.9803 𝑝𝑢 
𝜃2 = −26.23 𝑚𝑟𝑎𝑑
𝜆𝑃2

= 1 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑃𝑔2
+ 𝑗 𝑄𝑔2

= 235.36𝑀𝑊 − 𝑗10.27𝑀𝑉𝑎𝑟

𝑉1 = 1 𝑝𝑢 
𝜃1 = 0 𝑚𝑟𝑎𝑑
𝜆𝑃1

= 60.04 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑃𝑔1
+ 𝑗 𝑄𝑔1

= 400𝑀𝑊 + 𝑗80𝑀𝑉𝑎𝑟

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝑄𝑔𝑖
𝑚𝑖𝑛, 𝑄𝑔𝑖

𝑚𝑎𝑥 −80 ÷ +80 𝑀𝑉𝑎𝑟

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥 , 𝑆23

𝑚𝑎𝑥, 𝑆13
𝑚𝑎𝑥 200, 200, 300 𝑀𝑉𝐴

𝑆2,3 = 199.55𝑀𝑊 + 𝑗13.46 𝑀𝑉𝑎𝑟𝑆1,3 = 235.41𝑀𝑊 + 𝑗36.46 𝑀𝑉𝑎𝑟

𝑌2,3 = 1.88 − 𝑗11.1 𝑝𝑢

𝑌1,2 = 3.75 − 𝑗22.2 𝑝𝑢

𝑌1,3 = 1.88 − 𝑗11.1 𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

𝑆1,2 = 64.58 𝑀𝑊 +

+𝑗34.79 𝑀𝑉𝑎𝑟

𝐿𝑜𝑠𝑠𝑒𝑠:  14.96 𝑀𝑊
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡:  24145 𝐶𝐻𝐹/ℎ

15 𝐶𝐻𝐹/𝑀𝑊ℎ 1 𝐶𝐻𝐹/𝑀𝑊ℎ

225 𝐶𝐻𝐹/𝑀𝑊ℎ

1 2

3
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𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2 = 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

15 𝐶𝐻𝐹/𝑀𝑊ℎ 1 𝐶𝐻𝐹/𝑀𝑊ℎ

225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑉3 = 0.9567 𝑝𝑢 
𝜃3 = −226.55 𝑚𝑟𝑎𝑑
𝜆𝑃,3 = 16.36 𝐶𝐻𝐹/𝑀𝑊ℎ
𝑃𝑔3

+ 𝑗 𝑄𝑔3
= 0𝑀𝑊 + 𝑗80𝑀𝑉𝑎𝑟

𝑉2 = 1.0117 𝑝𝑢 
𝜃2 = +11.75 𝑚𝑟𝑎𝑑
𝜆𝑃,2 = 14.96 𝐶𝐻𝐹/𝑀𝑊ℎ
𝑃𝑔2

+ 𝑗 𝑄𝑔2
= 400𝑀𝑊 + 𝑗80𝑀𝑉𝑎𝑟

𝑉1 = 1 𝑝𝑢 
𝜃1 = 0 𝑚𝑟𝑎𝑑
𝜆𝑃,1 = 15 𝐶𝐻𝐹/𝑀𝑊ℎ
𝑃𝑔1

+ 𝑗 𝑄𝑔1
= 320.45 𝑀𝑊 + 𝑗22.27 𝑀𝑉𝑎𝑟

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝑄𝑔𝑖
𝑚𝑖𝑛, 𝑄𝑔𝑖

𝑚𝑎𝑥 −80 ÷ +80 𝑀𝑉𝑎𝑟

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥 , 𝑆23

𝑚𝑎𝑥, 𝑆13
𝑚𝑎𝑥 2000, 2000, 3000 𝑀𝑉𝐴

𝑆2,3 = 269.14 𝑀𝑊 + 𝑗49.27 𝑀𝑉𝑎𝑟𝑆1,3 = 251.20 𝑀𝑊 + 𝑗34.89 𝑀𝑉𝑎𝑟

𝑌2,3 = 1.88 − 𝑗11.1 𝑝𝑢

𝑌1,2 = 3.75 − 𝑗22.2 𝑝𝑢

𝑌1,3 = 1.88 − 𝑗11.1 𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

𝑆1,2 = −30.76 𝑀𝑊 +

−𝑗21.36 𝑀𝑉𝑎𝑟

Lines power transmission limits

x10

Solution

𝐿𝑜𝑠𝑠𝑒𝑠: 20.45 𝑀𝑊
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡:  5207 𝐶𝐻𝐹/ℎ

1 2

3
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By concatenating the previous problem for each time slot of the day, 
we obtain the schedule of each generator. This type of problems are 
called dispatching problems. In this case, we need to also add a time-
dependency constraint associated to generator ramping along with 
the fact that also other constraints are time-dependent.

min
𝑃𝑔2 𝑡 ,…,𝑃𝑔𝑔 𝑡 ,𝑄𝑔1 𝑡 ,…,𝑄𝑔𝑔 𝑡

෍

𝑡=1

24

෍

𝑖=1

𝑔

𝐶𝑖 𝑃𝑔𝑖
𝑡

𝑠. 𝑡.

𝑆𝑖 𝑡 = 𝑉𝑖 𝑡 ෍

𝑗=1

𝑠

𝑉𝑗 𝑡 𝑌𝑖𝑗 , 𝑖 = 1, … , 𝑠

𝑆𝑖 𝑡 = 𝑃𝑔𝑖
𝑡 + 𝑗𝑄𝑔𝑖

𝑡 + 𝑃𝑙𝑖
𝑡 + 𝑗𝑄𝑙𝑖

𝑡 , 𝑖 = 1, … , 𝑠

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

𝑡 ≤ 𝑃𝑔𝑖
𝑚𝑎𝑥, 𝑖 = 1, … , 𝑔

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖

𝑡 ≤ 𝑄𝑔𝑖
𝑚𝑎𝑥, 𝑖 = 1, … , 𝑔

𝑉1 =1𝑝𝑢, arg 𝑉1 = 0;

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 𝑡 ≤ 𝑉𝑚𝑎𝑥, 𝑖 = 2, … , 𝑠

𝑉𝑖 𝑡 𝑌𝑖𝑗 𝑉𝑖 𝑡 − 𝑉𝑗 𝑡 ≤ 𝑆𝑖,𝑗
𝑚𝑎𝑥, or 𝑌𝑖𝑗 𝑉𝑖 𝑡 − 𝑉𝑗 𝑡 ≤ 𝐼𝑖,𝑗

𝑚𝑎𝑥, 𝑖 ≠ 𝑗 = 1, … , 𝑠

𝜉𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

𝑡 + 1 − 𝑃𝑔𝑖
𝑡 ≤ 𝜉𝑔𝑖

𝑚𝑎𝑥

Where 𝑠 is the nr. of grid’s nodes and 𝑔 the nr. of generation units.
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In case some generators are energy storage systems, we need to 
enforce that their energy content (e.g. the state-of-charge of a 
battery) are within bounds.

min
𝑃𝑔2 𝑡 ,…,𝑃𝑔𝑔 𝑡 ,𝑄𝑔2 𝑡 ,…,𝑄𝑔𝑔 𝑡

𝑃𝑠1 𝑡 ,…,𝑃𝑠𝑚 𝑡 ,𝑄𝑠1 𝑡 ,…,𝑄𝑠𝑚 𝑡

෍

𝑡=1

𝑇𝑚𝑎𝑥

෍

𝑖=1

𝑔

𝐶𝑖 𝑃𝑔𝑖
𝑡 + ෍

𝑖=1

𝑚

𝐶𝑖 𝑃𝑠𝑖
𝑡

𝑠. 𝑡.

𝑆𝑖 𝑡 = 𝑉𝑖 𝑡 ෍

𝑗=1

𝑛

𝑉𝑗 𝑡 𝑌𝑖𝑗 , 𝑖 = 1, … , 𝑠

𝑆𝑖 𝑡 = 𝑃𝑔𝑖
𝑡 + 𝑗𝑄𝑔𝑖

𝑡 + 𝑃𝑠𝑖
𝑡 + 𝑗𝑄𝑠𝑖

𝑡 + 𝑃𝑙𝑖
𝑡 + 𝑗𝑄𝑙𝑖

𝑡 , 𝑖 = 1, … ,s

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

𝑡 ≤ 𝑃𝑔𝑖
𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑔

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖

𝑡 ≤ 𝑄𝑔𝑖
𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑔

𝑃𝑠𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑠𝑖

𝑡 ≤ 𝑃𝑠𝑖
𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑚

𝑄𝑠𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑠𝑖

𝑡 ≤ 𝑄𝑠𝑖
𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑚

𝑉1 =1𝑝𝑢, arg 𝑉1 = 0;

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 𝑡 ≤ 𝑉𝑚𝑎𝑥 , 𝑖 = 2, … , 𝑠

𝑉𝑖 𝑡 𝑌𝑖𝑗 𝑉𝑖 𝑡 − 𝑉𝑗 𝑡 ≤ 𝑆𝑖,𝑗
𝑚𝑎𝑥 , or 𝑌𝑖𝑗 𝑉𝑖 𝑡 − 𝑉𝑗 𝑡 ≤ 𝐼𝑖,𝑗

𝑚𝑎𝑥 , 𝑖 ≠ 𝑗 = 1, … , 𝑠

𝜉𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

𝑡 + 1 − 𝑃𝑔𝑖
𝑡 ≤ 𝜉𝑔𝑖

𝑚𝑎𝑥

𝑆𝑜𝐶𝑖 𝑡 + 1 = 𝑆𝑜𝐶𝑖 𝑡 + 𝑃𝑠𝑖
𝑡 + 1 Δ𝑡, 𝑖 = 1, … , 𝑚 (lossless model of the storage device 𝑖)

𝑆𝑜𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑖 𝑡 + 1 ≤ 𝑆𝑜𝐶𝑖

𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑚

Where 𝑚 is the number of energy storage devices.
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In case we add start-up and shutdown costs of the generators, we 
obtain the so-called unit commitment problem.

min
𝑃𝑔2 𝑡 ,…,𝑃𝑔𝑔 𝑡 ,𝑄𝑔2 𝑡 ,…,𝑄𝑔𝑔 𝑡

𝑤𝑔1 𝑡 ,…,𝑤𝑔𝑔 𝑡

෍

𝑡=1

24

෍

𝑖=1

𝑔

𝐶𝑖 𝑃𝑔𝑖
𝑡 + 𝑆𝑈𝑔𝑖

(𝑡)𝑤𝑔𝑖
𝑡 1 − 𝑤𝑔𝑖

𝑡 − 1 + 𝑆𝐷𝑔𝑖
(𝑡) 1 − 𝑤𝑔𝑖

𝑡 𝑤𝑔𝑖
𝑡 − 1

𝑠. 𝑡.
𝑤𝑔1

𝑡 ∈ 0,1

𝑆𝑖 𝑡 = 𝑉𝑖 𝑡 ෍

𝑗=1

𝑛

𝑉𝑗 𝑡 𝑌𝑖𝑗 , 𝑖 = 1, … , 𝑠

𝑆𝑖 𝑡 = 𝑃𝑔𝑖
𝑡 + 𝑗𝑄𝑔𝑖

𝑡 + 𝑃𝑙𝑖
𝑡 + 𝑗𝑄𝑙𝑖

𝑡 , 𝑖 = 1, … ,s

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

𝑡 ≤ 𝑃𝑔𝑖
𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑔

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖

𝑡 ≤ 𝑄𝑔𝑖
𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑔

𝑉1 =1𝑝𝑢, arg 𝑉1 = 0;

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 𝑡 ≤ 𝑉𝑚𝑎𝑥 , 𝑖 = 2, … , 𝑠

𝑉𝑖 𝑡 𝑌𝑖𝑗 𝑉𝑖 𝑡 − 𝑉𝑗 𝑡 ≤ 𝑆𝑖,𝑗
𝑚𝑎𝑥 , or 𝑌𝑖𝑗 𝑉𝑖 𝑡 − 𝑉𝑗 𝑡 ≤ 𝐼𝑖,𝑗

𝑚𝑎𝑥 , 𝑖 ≠ 𝑗 = 1, … , 𝑠

𝜉𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

𝑡 + 1 − 𝑃𝑔𝑖
𝑡 ≤ 𝜉𝑔𝑖

𝑚𝑎𝑥

where 𝑆𝑈𝑖 𝑡  is the cost of starting up unit 𝑖 at time 𝑡, 𝑆𝐷𝑖 𝑡  is the cost of 
shutting it down and 𝑤𝑔1

𝑡  the integer variable associated to the state 

of the generation unit: 𝑤𝑖 𝑡 = 1 ⇔ 𝑃𝑔𝑖
𝑡 > 0 .
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Recall on convex optimization 15

The OPF problem is about optimisation.

Convex optimization problems are continuous optimization problems 
and are usually tractable (i.e., can be solved exactly for large 
dimensions, up to hundreds of thousands of dimensions).

Non-convex complex continuous optimization problems can be very 
hard to solve exactly, even for modest dimensions; they are solved 
approximately using heuristics that often need an initial guess.

Observation: continuous means that the optimization variables are real 
or complex numbers – as opposed to “discrete” optimization problems 
where the optimization variables can be represented as integers.

In the context of OPF problems, we can have discrete OPF in case, for 
instance, we would like to determine which generators are on or off at 
a given time 𝑡 accounting for their start-up and shutdown costs. This 
type of problem is called unit commitment (see slide 13).
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Convex optimization problems

 min 𝑓0(𝑥)
over all 𝑥 ∈ 𝑋

 where 𝑋 is a convex subset of 
ℝ𝑛 and 𝑓0 is a convex function

 max 𝑓0(𝑥)
over all 𝑥 ∈ 𝑋

 where 𝑋 is a convex subset of 
ℝ𝑛 and 𝑓0 is a concave function

Convex set

∀𝑥, 𝑥′ ∈ 𝑋, 𝑥, 𝑥′ ⊂ 𝑋

𝑥

𝑥′

𝑥

𝑥′

Non-convex set

∃𝑥, 𝑥′ ∈ 𝑋, 𝑥, 𝑥′ ⊄ 𝑋

𝑥 ∈ 𝑋

𝑓 𝑥 ∈ ℝ 

𝑥 ∈ 𝑋

𝑓 𝑥 ∈ ℝ 

𝑥 ∈ 𝑋

𝑓 𝑥 ∈ ℝ 

Convex function:
All chords are ≥ graph

Concave function

Non convex, non 
concave function
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How to test convexity ?

1. Function 𝑓 is convex if the 
domain dom 𝑓 is convex and if  
∀𝑥, 𝑦 ∈  dom f  and 𝜆 ∈ [0,1] we 
have
𝑓 𝜆𝑥 + 1 − 𝜆 𝑦 ≤ 𝜆𝑓 𝑥 +
1 − 𝜆 𝑓(𝑦).

2. If 𝑓 is differentiable then 𝑓 is 
convex iff
𝑓 𝑦 ≥ 𝑓 𝑥 +  𝛻𝑓𝑇 𝑥 𝑦 − 𝑥
∀𝑥, 𝑦 ∈ dom 𝑓. 

3. If 𝑓 is twice differentiable then 𝑓 
is convex iff
𝛻2𝑓 𝑥 ≽ 0 (positive semidefinite 
Hessian).

4. If 𝑓𝑖 , 𝑖 ∈ 𝐼 are convex and      
𝑐𝑖 ≥ 0, then 𝑓 = σ𝑖∈𝐼 𝑐𝑖𝑓𝑖 is 

convex.

5. Under the same 
assumptions 𝑓(𝑥) =
max

𝑖
𝑓𝑖(𝑥) is convex.

6. If 𝑓, ℎ are convex functions 
and ℎ is increasing, then 
𝑔 = ℎ(𝑓(∙)) is convex.

7. The set {𝑥: 𝑓 𝑥 ≤ 𝑐} is 
convex if 𝑓 is convex (level 
set).
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Why are convex problems special ?

𝑥

𝑓(𝑥)

𝑥

𝑓(𝑥)

min 𝑓(𝑥) is a convex problem
any local minimum
is a global minimum.

min 𝑓(𝑥) is not a convex problem
there can be many local minima.



A: max 𝑥2 over 𝑥 ∈ [𝑎, 𝑏]

B: min 𝑥2 over 𝑥 ∈ [𝑎, 𝑏]

C: max 𝑥 + 𝑦 over

(𝑥, 𝑦) ∈ ℝ2 subject to 

𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

Recall on convex optimization 19

Which of these problems is convex ?

1. A

2. B

3. C

4. A and B

5. A and C

6. B and C

7. All

8. None

9. I don’t know



A: max 𝑥2 over 𝑥 ∈ [𝑎, 𝑏]

B: min 𝑥2 over 𝑥 ∈ [𝑎, 𝑏]

C: max 𝑥 + 𝑦 over

(𝑥, 𝑦) ∈ ℝ2 subject to 

𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

Recall on convex optimization 20

Which of these problems is convex ?

1. A

2. B

3. C

4. A and B

5. A and C

6. B and C

7. All

8. None

9. I don’t know
Answer 6

A is not a convex optimization problem; this is a maximization and the function should be concave, 
which is not true.

B is a convex optimization problem: the function to be minimized is convex and the set 𝑋 is an interval, 

which is convex

C is a a convex optimization problem: the function to be maximized is convex (and concave) and 

the set 𝑋 is defined by linear inequalities, therefore is convex.



Is this problem convex ?
min
𝑥,𝑦

𝑎𝑥2 + 𝑏𝑦2

𝑠. 𝑡.  𝑥2 + 𝑦2 ≤ 𝑐2

1. Yes

2. No

3. Depends on 𝑎 and 𝑏

4. Depends on 𝑎, 𝑏, and 𝑐

5. I don’t know

Recall on convex optimization 21



Is this problem convex ?
min
𝑥,𝑦

𝑎𝑥2 + 𝑏𝑦2

𝑠. 𝑡.  𝑥2 + 𝑦2 ≤ 𝑐2

1. Yes

2. No

3. Depends on 𝑎 and 𝑏

4. Depends on 𝑎, 𝑏, and 𝑐

5. I don’t know

Answer 3

The constraint 𝑥2 + 𝑦2 ≤ 𝑐2 always defines a convex set irrespective of the value of 𝑐. 

Since the objective function 𝑓 𝑥, 𝑦 = 𝑎𝑥2 + 𝑏𝑦2 is twice differentiable,  it is convex if 
and only if the Hessian ∇2𝑓 is positive semidefinite (PSD). In this case, the Hessian matrix 

is 
𝑎 0
0 𝑏

, which is PSD only when 𝑎, 𝑏 ≥ 0.

For example, 𝑥2 + 𝑦2 is a convex function of (𝑥, 𝑦) but 𝑥2 − 𝑦2 is not.

Recall on convex optimization 22
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Is this problem convex ?
min
𝑥,𝑦

 𝑥2 − 𝑦2 

𝑠. 𝑡.  𝑥2 + 𝑦2 = 𝑐2 (𝑐 > 0)

1. Yes

2. No

3. It depends on 𝑐

4. I don’t know
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Is this problem convex ?
min
𝑥,𝑦

 𝑥2 − 𝑦2 

𝑠. 𝑡.  𝑥2 + 𝑦2 = 𝑐2 (𝑐 > 0)

1. Yes

2. No

3. It depends on 𝑐

4. I don’t know

Answer 2

The set 𝑥2 + 𝑦2 = 𝑐2 represents a circle in two dimensions. It is not a 
convex set.
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Is it possible to reformulate the problem as a convex problem?
min
𝑥,𝑦

 𝑥2 − 𝑦2 

𝑠. 𝑡.  𝑥2 + 𝑦2 = 𝑐2 

1. Yes

2. No

3. It depends on 𝑐

4. I don’t know
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Is it possible to reformulate the problem as a convex problem?
min
𝑥,𝑦

 𝑥2 − 𝑦2 

𝑠. 𝑡.  𝑥2 + 𝑦2 = 𝑐2 

1. Yes

2. No

3. It depends on 𝑐

4. I don’t know

Answer 1
We can eliminate 𝑦 in the objective function by using the constraint:

𝑥2 + 𝑦2 = 𝑐2 ⇔ 𝑦 = ± 𝑐2 − 𝑥2 and 𝑥 ≤ |𝑐|

Thus, the problem is equivalent to: min
𝑥

𝑥2 − 𝑐2 − 𝑥2 s. t. 𝑥 ≤ |𝑐|

That is equivalent to min  2𝑥2 − 𝑐2 s. t. 𝑥 ≤ |𝑐| which is a convex problem.

Take home message: transformation of problem formulation is an important topic.  

Some non-convex formulations can be made convex, but others can’t.
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A linear program can be described in the form:
min
𝑥∈ℝ𝑛

𝑐𝑇𝑥

𝑠. 𝑡.
𝐴𝑥 ≤ 𝑏, 𝐶𝑥 = 𝑑

Indeed, the objective function is linear (so, it is convex) and the set 
𝑋 ⊂ ℝ𝑛 is defined by linear equalities and inequalities (that are 
convex too). Here 𝑐 ∈ ℝ𝑛 and 𝐴, 𝐶 are matrices with 𝑛 columns.

For this type of optimizations, there exists very efficient packages to 
solve large scale problems. 

Note that the following problem (obtained by changing 𝑐 into −𝑐) 
is also a linear program 

max
𝑥∈ℝ𝑛

𝑐𝑇𝑥

𝑠. 𝑡.
𝐴𝑥 ≤ 𝑏, 𝐶𝑥 = 𝑑

Linear programs 28



max 𝑓0 𝑥 = 𝑥 + 𝑦
𝑠. 𝑡.
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

Linear programs 29

Example

𝑥

𝑦

8

5

4 10
𝑥∗ = 2

𝑦∗ = 4
𝑓0 𝑥∗, 𝑦∗ = 6 = optimal value

The solution space 
identified by the 
constraints is 
convex (grey area)
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A: min
𝑥,𝑦

𝑥2 + 𝑦2

𝑠. 𝑡.
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

B: min
𝑥,𝑦

𝑓0 𝑥, 𝑦

𝑠. 𝑡.
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

where 𝑓0 𝑥, 𝑦 : =  max(𝑥 + 𝑦, 2𝑦)

31

Which problem can be formulated as LP?

1. A

2. B

3. Both

4. None

5. I don’t know

Max-Removal Transformation



A: min
𝑥,𝑦

𝑥2 + 𝑦2

𝑠. 𝑡.
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

B: min
𝑥,𝑦

𝑓0 𝑥, 𝑦

𝑠. 𝑡.
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

where 𝑓0 𝑥, 𝑦 : =  max(𝑥 + 𝑦, 2𝑦)

32

Which problem can be formulated as LP?

1. A

2. B

3. Both

4. None

5. I don’t know

Answer 2

A is a convex optimization problem but is not a linear program. It 
does not seem possible to transform it exactly into an equivalent 
linear program.

B is not formulated as a linear program, but, as we show next, it is 
equivalent to a linear program.

Max-Removal Transformation
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The problem B is equivalent to problem B’

Let us see why 𝐵 ⇔ 𝐵′: the key observation is that the constraints

𝑡 ≥ 𝑥 + 𝑦, 𝑡 ≥ 2𝑦 are equivalent to 𝑡 ≥ max 𝑥 + 𝑦, 2𝑦 . 

Problem B: min
𝑥,𝑦

𝑓0 𝑥, 𝑦

𝑠. 𝑡.
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

where 𝑓0 𝑥, 𝑦 : =  max(𝑥 + 𝑦, 2𝑦)

Problem B’: min
𝑡, 𝑥,𝑦

 𝑡

𝑠. 𝑡. 
 𝑡 ≥ 𝑥 + 𝑦
 𝑡 ≥ 2𝑦
 𝑥 + 2𝑦 ≤ 10
 2𝑥 + 𝑦 ≤ 8
 𝑥 ≥ 0, 𝑦 ≥ 0

Max-Removal Transformation
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Let 𝑋 be the set of 𝑥, 𝑦  that are feasible for problem 𝐵, i.e. 𝑋 =
{ 𝑥 ≥ 0 , 𝑦 ≥ 0 : 𝑥 + 2𝑦 ≤ 10, 2𝑥 + 𝑦 ≤ 8}. Thus, problem 𝐵′ can be re-
written as 

 min
𝑡,𝑥,𝑦

 𝑡

 𝑠. 𝑡.
𝑡 ≥ 𝑓0 𝑥, 𝑦
𝑥, 𝑦 ∈  𝑋

The optimal value of 𝐵′ is the min  of 𝑡 in the shaded area. We see on 
the figure that it is the minimum of 𝑓0 𝑥, 𝑦  over 𝑥, 𝑦 ∈ 𝑋,which is the 
optimum of 𝐵. 

𝑡

(𝑥, 𝑦)
𝑡∗ = 𝑓0(𝑥∗, 𝑦∗)

(𝑥∗, 𝑦∗)

𝑡 = 𝑓0(𝑥,

𝑡 ≥ 𝑓0(𝑥, 𝑦)

𝑋

Max-Removal Transformation
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Any problem of the form
min

𝑥
𝑓1 𝑥 + … + 𝑓𝑛 𝑥 + ℎ 𝑥

𝑠. 𝑡.
𝑥 ∈ 𝑋 ⊂ ℝ𝑚

where 𝑓𝑗 𝑥 ≔ max 
𝑖=1…𝑛𝑗

𝑔𝑗,𝑖(𝑥) 

is equivalent to
min

𝑡,𝑥
𝑡1 + ⋯ + 𝑡𝑛 + ℎ 𝑥  

𝑠. 𝑡.
𝑥 ∈ 𝑋, 𝑡 = (𝑡1, … 𝑡𝑛) ∈ ℝ𝑛

𝑡𝑗 ≥ 𝑔𝑗,𝑖 𝑥 , ∀𝑖 = 1 … 𝑛𝑗 , ∀𝑗 = 1 … 𝑛

We call this process the max-removal transformation as it removes 
the max terms from the objective function at the expense of adding 
one optimization variable per max. It is very often used in the 
context of OPFs.



(P)
min  |𝑥 − 𝑦 − 5|  over
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

(A)
min 𝑡  over
𝑡 ≥ 𝑥 − 𝑦 − 5
𝑡 ≥ −𝑥 + 𝑦 + 5
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

(B)
min  𝑡  over
𝑡 ≤ 𝑥 − 𝑦 − 5
𝑡 ≤ −𝑥 + 𝑦 + 5
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

Max-Removal Transformation 36

Which problem is a re-formulation of problem 𝑃 as a Linear Program ?

1. A

2. B

3. Both

4. None

5. I don’t know



(P)
min  |𝑥 − 𝑦 − 5|  over
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

(A)
min 𝑡  over
𝑡 ≥ 𝑥 − 𝑦 − 5
𝑡 ≥ −𝑥 + 𝑦 + 5
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0

(B)
min  𝑡  over
𝑡 ≤ 𝑥 − 𝑦 − 5
𝑡 ≤ −𝑥 + 𝑦 + 5
𝑥 + 2𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 8
𝑥 ≥ 0, 𝑦 ≥ 0
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Which problem is a re-formulation of problem P as a Linear Program ?

1. A

2. B

3. Both

4. None

5. I don’t know

Answer 1
Recall that the absolute function can be rewritten as follows:

𝑥 = max(𝑥, −𝑥)

Therefore, the objective function 𝑥 − 𝑦 − 5  can be written as a 
maximum of linear functions:

𝑥 − 𝑦 − 5 = max(𝑥 − 𝑦 − 5, −𝑥 + 𝑦 + 5)
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By looking at the original AC-OPF problem, we can say that it is a 
non-convex optimization problem because the set 𝑿 of feasible 
variables is not-convex. Let’s look at a simple example.
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Feasible set (𝑃2, 𝑄2) 

Line admittance:

 𝑌1,2 = 0.734 –  𝑗 4.890 𝑝. 𝑢.

Node 1 is the slack bus:

𝑉1 = 1 + 𝑗0 𝑝𝑢

Constraints on voltage magnitude at node 2

0.95 ≤ 𝑉2 ≤ 1.05 𝑝𝑢

So, the feasible set for (𝑃2, 𝑄2) is given by:

𝑆2,1 = 𝑃2 + 𝑗𝑄2 = 𝑉2𝑌1,2 𝑉2 − 𝑉1

𝑉2
𝑟𝑒 2 + 𝑉2

𝑖𝑚 2
= 𝑐𝑜𝑛𝑠𝑡 ∈ 0.95, 1.05

Use fsolve

in Matlab

(𝑃2, 𝑄2) decision

variables



In the next lectures we will use two approaches to render the OPF 
problem convex:

1. replace the original constraints by means of some linear 
approximations;

2. relax the original set of constraints.
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